| Question | Answer        | Mark | Comments |
|----------|---------------|------|----------|
| 1        | $\frac{7}{x}$ | B1   |          |

| Question | Answer                                                                          | Mark       | Comme                                                                                                                   | ents   |  |
|----------|---------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------|--------|--|
|          | Alternative method 1: substitutes $2f$ for $d$                                  |            |                                                                                                                         |        |  |
|          | $\frac{e-f}{2f-e} = \frac{1}{4}$ or $2f-e = 4(e-f)$                             | M1         | oe equation in $e$ and $f$                                                                                              |        |  |
|          | $6f = 5e$ or $\frac{e}{f} = \frac{6}{5}$                                        | M1dep      | oe with variables colle eg 1.5 $f$ = 1.25 $e$ oe with single fraction                                                   |        |  |
|          | 6:5                                                                             | <b>A</b> 1 | oe ratio                                                                                                                |        |  |
|          | Alternative method 2: substitutes $\frac{d}{2}$ for $f$                         |            |                                                                                                                         |        |  |
|          | $d - e = 4(e - \frac{d}{2})$ or $3d = 5e$                                       | M1         | oe equation in $d$ and $e$                                                                                              |        |  |
| 2        | $6f = 5e$ or $\frac{e}{f} = \frac{6}{5}$                                        | M1dep      | oe with variables colle eg $1.5f = 1.25e$ oe with single fraction                                                       |        |  |
|          | 6:5                                                                             | A1         | oe ratio                                                                                                                |        |  |
|          | Alternative method 3: substitutes $2f$ for $d$ and forms simultaneous equations |            |                                                                                                                         |        |  |
|          | e-f=1 and $2f-e=4$                                                              | M1         | oe with rhs in the ratio eg $e-f=2$ and $2f-e=8$                                                                        | 01:4   |  |
|          | f = 5<br>or<br>e = 6                                                            | M1dep      | correct solution for one unknown from their correct simultaneous equations eg $f$ = 10 or $e$ = 12 from above equations |        |  |
|          | 6:5                                                                             | <b>A</b> 1 | oe ratio                                                                                                                |        |  |
|          | Additional Guidance                                                             |            |                                                                                                                         |        |  |
|          | 5 : 6 with no method marks awarded                                              |            |                                                                                                                         | M0M0A0 |  |

| Q                                                                                                                                      | Answer                                                                                                                                                                                                                                                                     | Mark  | Comments                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                        | $\frac{731}{x} + \frac{287}{x - 24} = 2$                                                                                                                                                                                                                                   | M1    | oe equation                                                                                                                                                                                                                           |
|                                                                                                                                        | 731(x - 24) + 287x<br>or<br>731x - 17544 + 287x                                                                                                                                                                                                                            | M1dep | oe allow with denominator $x(x - 24)$ oe                                                                                                                                                                                              |
|                                                                                                                                        | $2x^2 - 1066x + 17544 (= 0)$<br>or<br>$x^2 - 533x + 8772 (= 0)$                                                                                                                                                                                                            | A1    | oe eg $x^2 - 533x = -8772$                                                                                                                                                                                                            |
| 3                                                                                                                                      | $\frac{-(-1066) \pm \sqrt{(-1066)^2 - 4 \times 2 \times 17544}}{2 \times 2}$ or $\frac{1066 \pm \sqrt{1136356 - 140352}}{2 \times 2}$ or $\frac{1066 \pm \sqrt{996004}}{2 \times 2}$ or $\frac{1066 \pm 998}{2 \times 2}$ or $(2x - 34)(x - 516)$ or $17 \text{ and } 516$ | M1    | ft their 3-term quadratic oe eg $\frac{-(-533)\pm\sqrt{(-533)^2-4\times1\times8772}}{2\times1}$ or $\frac{533\pm\sqrt{284089-35088}}{2\times1}$ or $\frac{533\pm\sqrt{249001}}{2\times1}$ or $\frac{533\pm499}{2}$ or $(x-17)(x-516)$ |
|                                                                                                                                        | 516                                                                                                                                                                                                                                                                        | A1    | must discard 17                                                                                                                                                                                                                       |
| Additional Guidance  First M1 may be awarded for correct work, with no or incorrect ans even if this is seen amongst multiple attempts |                                                                                                                                                                                                                                                                            |       | uidance                                                                                                                                                                                                                               |
|                                                                                                                                        |                                                                                                                                                                                                                                                                            |       | no or incorrect answer,                                                                                                                                                                                                               |
|                                                                                                                                        | 3rd M1 Allow ft of their 3-term quadratic even if discriminant is ≤ 0                                                                                                                                                                                                      |       |                                                                                                                                                                                                                                       |
| In quadratic formula, allow eg 1066 <sup>2</sup> for (–106                                                                             |                                                                                                                                                                                                                                                                            |       | )2                                                                                                                                                                                                                                    |

| Q    | Answer                                                                                                                                                                                                    | Mark | Comme                                                                                  | nt   |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------|------|--|
|      | $\left(\frac{6}{a}\right) = \frac{24}{4a}$ or converts both fractions to a common denominator or correct unsimplified fraction $eg \frac{26}{8a} \text{ or } \frac{13a}{4a^2} \text{ or } \frac{3.25}{a}$ | M1   | oe eg $\frac{48}{8a}$ and $\frac{22}{8a}$ or $\frac{24a}{4a^2}$ and $\frac{11a}{4a^2}$ |      |  |
| 4(a) | $\frac{13}{4a}$                                                                                                                                                                                           | A1   |                                                                                        |      |  |
|      | Additional Guidance                                                                                                                                                                                       |      |                                                                                        |      |  |
|      | Do not ignore further work eg $\frac{13}{4a}$ followed by answer $\frac{3.25}{a}$                                                                                                                         |      |                                                                                        | M1A0 |  |
|      | Allow a division sign rather than a fraction line for M1 only                                                                                                                                             |      |                                                                                        |      |  |
|      | eg 26 ÷ 8a                                                                                                                                                                                                |      |                                                                                        | M1A0 |  |
|      | eg 13 ÷ 4a                                                                                                                                                                                                |      |                                                                                        | M1A0 |  |

| Q    | Answer                                                                                                                                                                 | Mark | Comme                                                          | nt                                     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------|----------------------------------------|
|      | y(y - 3)                                                                                                                                                               | M1   |                                                                |                                        |
|      | (y+7)(y+3)                                                                                                                                                             | M1   |                                                                |                                        |
|      | (y+3)(y-3)                                                                                                                                                             | M1   |                                                                |                                        |
|      | $y(y + 7)$ or $y^2 + 7y$                                                                                                                                               | A1   | SC1<br>$y^4 - 3y^3 + 10y^3 - 30y^2 + 3y^4 + 7y^3 - 9y^2 - 63y$ | 21 <i>y</i> <sup>2</sup> – 63 <i>y</i> |
| 4(b) | Additional Guidance                                                                                                                                                    |      |                                                                |                                        |
|      | $y(y+7)$ or $y^2+7y$ with no other working                                                                                                                             |      |                                                                | M1M1M1A1                               |
|      | Answer $\frac{y(y+7)}{1}$ or $\frac{y^2+7y}{1}$                                                                                                                        |      |                                                                | M1M1M1A0                               |
|      | Ignore the consistent use of a different variable within a factorisation                                                                                               |      |                                                                |                                        |
|      | Award SC1 only if there are no correct factorisations eg correct factorisation to $(y + 7)(y + 3)$ and correct expansion to $y^4 - 3y^3 + 10y^3 - 30y^2 + 21y^2 - 63y$ |      |                                                                | M1 only                                |

| Q | Answer                                                                                                                                                                                                                                                                                                                    | Mark                                                                                                                                                                                    | Comments                           |        |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------|
|   | $\frac{(x-5)(x+2)}{(x-2)(x+2)}$ and $\frac{(x+5)(x-2)}{(x+2)(x-2)}$                                                                                                                                                                                                                                                       | (x - 2)(x + 2) or x <sup>2</sup> - 2x + 2; be seen (expansion may be grid) brackets in any order if the brackets are not showr numerators, expansions must may be seen as a single frac | seen in a  n for the st be correct |        |
|   | $x^2 - 5x + 2x - 10 \text{ or } x^2 - 3x - 10$ or $x^2 + 5x - 2x - 10 \text{ or } x^2 + 3x - 10$ M1 correct expansion of $(x - 5)(x + 2x - 2)$ ignore denominators may be seen in a grid implied by $2x^2 - 20$ if no errors s expansions  M2 seen with no errors and $\frac{2x^2 - 20}{x^2 - 4}$ A1 and $a = 2$ $b = 20$ |                                                                                                                                                                                         |                                    |        |
|   |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                         |                                    |        |
| 5 | Additional Guidance                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                         |                                    |        |
|   | Missing brackets must be recovered but condone missing clothe end of a numerator or denominator $eg \frac{(x-5)(x+2)}{(x-2)(x+2)} + \frac{(x+5)(x-2)}{(x+2)(x-2)}$                                                                                                                                                        |                                                                                                                                                                                         |                                    | 1st M1 |
|   | 2nd M1 is awarded for four correct te incorrectly                                                                                                                                                                                                                                                                         | rms even                                                                                                                                                                                | if subsequently simplified         |        |
|   | For terms seen in a grid, signs must l                                                                                                                                                                                                                                                                                    | be correct                                                                                                                                                                              | (allow eg $2x$ for $+2x$ )         |        |
|   | For 1st M1 allow multiplication signs                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                         |                                    |        |
|   | After M2A1 ignore incorrect values st                                                                                                                                                                                                                                                                                     | ated eg                                                                                                                                                                                 | a = 2 $b = -20$                    |        |
|   | $\frac{2x^2-20}{x^2-4}$ may come from wrong working or incomplete working                                                                                                                                                                                                                                                 |                                                                                                                                                                                         |                                    |        |
|   | $\operatorname{eg} \frac{(x-5)(x+2)}{(x-2)(x+2)} + \frac{(x+5)(x-2)}{(x+2)(x-2)}$ $\frac{x^2 - 10 + x^2 - 10}{x^2 - 4} = \frac{2x^2 - 20}{x^2 - 4}$                                                                                                                                                                       |                                                                                                                                                                                         |                                    | M1     |
|   |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                         |                                    | M0A0   |

| Q | Answer                                                                                   | Mark  | Comment                                                                               |  |
|---|------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------|--|
|   | $\frac{6}{3(x+1)}$ or $\frac{(7-5x)(x+1)}{3(x+1)}$ or $\frac{3\times 4x(x+1)}{3(x+1)}$   | M1    | oe one correct term with possible common denominator                                  |  |
| 6 | $\frac{6}{3(x+1)}$ and $\frac{(7-5x)(x+1)}{3(x+1)}$ and $\frac{3\times 4x(x+1)}{3(x+1)}$ | M1dep | oe all terms correct with common denominator may be a single fraction                 |  |
|   | $\frac{6}{3(x+1)} + \frac{7x+7-5x^2-5x}{3(x+1)} + \frac{12x^2+12x}{3(x+1)}$              | M1dep | oe all terms correct with common<br>denominator and brackets on numerator<br>expanded |  |
|   | $\frac{7x^2 + 14x + 13}{3(x+1)}$                                                         | A1    | SC3 $7x^2 + 14x + 13 (= 0)$<br>or $\frac{7x^2 + 14x + 13}{3x + 1}$                    |  |
|   | Additional Guidance                                                                      |       |                                                                                       |  |
|   | Do not award A mark if further incorrect simplification is seen after a correct answer   |       |                                                                                       |  |
|   | 3(x + 1) can be $3x + 3$ throughout                                                      |       |                                                                                       |  |